Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.

نویسندگان

  • Sarah A Stamper
  • Manu S Madhav
  • Noah J Cowan
  • Eric S Fortune
چکیده

Recent studies have shown that central nervous system neurons in weakly electric fish respond to artificially constructed electrosensory envelopes, but the behavioral relevance of such stimuli is unclear. Here we investigate the possibility that social context creates envelopes that drive behavior. When Eigenmannia virescens are in groups of three or more, the interactions between their pseudo-sinusoidal electric fields can generate 'social envelopes'. We developed a simple mathematical prediction for how fish might respond to such social envelopes. To test this prediction, we measured the responses of E. virescens to stimuli consisting of two sinusoids, each outside the range of the Jamming Avoidance Response (JAR), that when added to the fish's own electric field produced low-frequency (below 10 Hz) social envelopes. Fish changed their electric organ discharge (EOD) frequency in response to these envelopes, which we have termed the Social Envelope Response (SER). In 99% of trials, the direction of the SER was consistent with the mathematical prediction. The SER was strongest in response to the lowest initial envelope frequency tested (2 Hz) and depended on stimulus amplitude. The SER generally resulted in an increase of the envelope frequency during the course of a trial, suggesting that this behavior may be a mechanism for avoiding low-frequency social envelopes. Importantly, the direction of the SER was not predicted by the superposition of two JAR responses: the SER was insensitive to the amplitude ratio between the sinusoids used to generate the envelope, but was instead predicted by the sign of the difference of difference frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perception and coding of envelopes in weakly electric fishes.

Natural sensory stimuli have a rich spatiotemporal structure and can often be characterized as a high frequency signal that is independently modulated at lower frequencies. This lower frequency modulation is known as the envelope. Envelopes are commonly found in a variety of sensory signals, such as contrast modulations of visual stimuli and amplitude modulations of auditory stimuli. While psyc...

متن کامل

Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.

In animals with active sensory systems, group size can have dramatic effects on the sensory information available to individuals. In "wave-type" weakly electric fishes there is a categorical difference in sensory processing between solitary fish and fish in groups: when conspecifics are within about 1m of each other, the electric fields mix and produce interference patterns that are detected by...

متن کامل

MAKING SENSE: WEAKLY ELECTRIC FISH MODULATE SENSORY FEEDBACK VIA SOCIAL BEHAVIOR AND MOVEMENT by

Animals rely on sensory information for the control of their behavior. Understanding this process requires a detailed description of the sensory feedback that they receive, which is often determined by an animal's proximity to conspecifics and its own movement within the environment. This dissertation examines the role of social behavior and movement for the modulation of electrosensory feedbac...

متن کامل

Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.

Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solita...

متن کامل

The decoding of electrosensory systems.

Progress in the study of electrosensory systems has been facilitated by the systematic use of behavior as a tool to probe the nervous system. Indeed, a specific behavior that is found in a subset of weakly electric fishes, the jamming avoidance response, was used to identify and characterize an entire suite of brain circuits, from sensory receptors to motor units, that are involved in control o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2012